Preparation of Some 1,3-Selenazin-4-ones

Masataka Yokoyama,* Katsushi Kumata, Hidekatsu Hatanaka, and Tadashi Shiraishi Department of Chemistry, Faculty of Science, Chiba University, Yayoi-cho, Chiba 260 (Received April 12, 1986)

Synopsis. 2-Cyano-3-hydroseleno-3-(methylthio)acrylamide reacts with carbonyl compounds in the presence of sulfuric acid and aroyl chlorides in the presence of pyridine to give the corresponding 2,3-dihydro-4H-1,3-selenazin-4ones and 4H-1,3-selenazin-4-ones in moderate yields, respectively.

In the chemistry of heterocycles containing selenium and nitrogen atoms, many literatures concerning

1,3-selenazoles have appeared and their features have been well documented. 10 However, only some reports have been published on the synthesis of 4H-1,3selenazines perhaps because of the synthetic difficulty.2) During the course of studies on heteroatom rearrangements³⁾ we have fond a convenient preparative procedure for S,S-dimethyl dithioselenocarbonate (1).4) As is synthetic application it was found that

Table Compounds 3 and 4 Prepared

Product	Yield	$rac{\mathbf{Mp}}{\mathbf{ heta_m}/^{\circ}\mathbf{C}}$	Molecular Formula ^{a)}	IR cm ⁻¹	$\frac{^{1}\text{H NMR(solv./TMS)}}{\delta(\text{ppm})}$	$\frac{\mathrm{MS^{b)}}}{m/z(\mathrm{M^+})}$
	%					
3a	53	189—190	C ₈ H ₁₀ N ₂ OSSe	3120, 3020	(CDCl ₃) 1.89(s, 6H, C <u>H</u> ₃);	262
				(NH); 2200	$2.65(s, 3H, SCH_3); 6.73$	
				(CN); 1640	(br, 1H, N <u>H</u>)	
				(CO)		
3Ь	90	204-205	$C_{11}H_{14}N_2OSSe$	3120, 3020	$(CDCl_3)$ ca. $1.3(m, 6H, C\underline{H}_2);$	302
				(NH); 2200	ca. $2.0(m, 4H, CH2); 2.7(s,$	
				(CN); 1640	3H, SC <u>H</u> ₃); 8.1(br, 1H, N <u>H</u>)	
				(CO)		
3 c	41	162-163	C ₂ H ₁₂ N ₂ OSSe	3120, 3020	$(CDCl_3)$ ca. $1.0(m, 3H, CH_3);$	276
				(NH); 2200	ca. $1.5(m, 2H, CH2); ca. 2.0$	
				(CN); 1640	(m, 2H, CH2); 2.7(s, 3H,	
				(CO)	$SC\underline{H}_3$; 5.16(d, 1H, $C\underline{H}$, $J=4$	
					Hz); 6.14(br, 1H, N <u>H</u>)	
3d	51	214-215	$C_{12}H_{10}N_2OSSe$	3120, 3020	$(Py-D_5)$ 2.7(s, 3H, SCH_3); 6.5	310
				(NH); 2200	(br, 1H, CH); ca. 7.5(m, 5H,	
				(CN); 1640	$C_6\underline{H}_5$); 10.5(br, 1H, N <u>H</u>)	
				(CO)		
3e	72	195—196	$C_{10}H_8N_2O_2SSe$	3250(NH);	$(CDCl_3)$ 2.7(s, 3H, SCH_3); 6.2	300
				2200(CN);	(br, 1H, C <u>H</u>); 6.26, 6.45, 6.53	
				1650(CO)	(m, 3H, C_4H_3O); 7.5(br, 1H,	
					N <u>H</u>)	
4a	59	188—189	$C_{12}H_8N_2OSSe$	2220(CN);	$(CDCl_3)$ 2.8(s, 3H, SCH_3); 7.5,	308
				1640(CO)	7.7(m, 3H, $C_6 \underline{H}_5$); 8.0(m,	
					$2H$, $C_6\underline{H}_5$)	
4b	70	235-236	C ₁₆ H ₁₀ N ₂ OSSe	2220(CN);	(CDCl ₃ -DMSO) 2.8(s, 3H,	358
			20 20 0	1640(CO)	SCH_3 ; 7.4—8.0(m, 6H, $C_{10}H_7$);	
				•	8.4(s, 1H, $C_{10}H_{7}$)	
4 c	48	137—138	$C_{13}H_{10}N_2O_2SSe$	2210(CN);	(CDCl ₃ -DMSO) 2.4(s, 3H,	338
			10 10 0	1630(CO)	$C\underline{H}_3$); 2.7(s, 3H, $SC\underline{H}_3$); 5.8	
				, ,	(d, d, 2H, C_6H_4 , $J=8Hz$);	
					6.8(d, d, 2H, C_6H_4 , $J=8$ Hz)	
4d	66	228229	C ₁₂ H ₇ N ₂ OSSeCl	2210(CN);	(CDCl ₃ -DMSO) 2.8(s, 3H,	342
				1640(CO)	SCH_3 ; 7.4(d, d, 2H, C_6H_4 ,	
				, ,	$J=8 \text{ Hz}$); 7.8(d, d, 2H, $C_6 \underline{H_4}$,	
					J=8 Hz)	
4e	62	186—187	C ₁₁ H ₇ N ₃ OSSe	2210(CN);	(DMSO-D ₆) 2.8(s, 3H, $SC\underline{H}_3$);	309
			, ,	1640(CO)	7.4, 8.1, 8.6, 8.9(m, 4H,	
				` ,	$C_5 \underline{H}_4 N)$	

a) Satisfactory microanalyses obtained: C±0.30, H±0.22, N±0.28. b) M+ based on 80Se isotope peak.

several 4H-1,3-selenazin-4-ones could be easily synthesized starting from 1. Herein we wish to report their preparations.

Compound 1 reacted with cyanoacetamide in the presence of sodium hydride under the oxygen-free conditions to give 2-cyano-3-hydroseleno-3-(methylthio)-acrylamide (2) (77% yield), which could be kept for two or three weeks in a refrigerator without decomposition. Compound 2 was allowed to react with various carbonyl compounds in the presence of sufuric acid and some aroyl chlorides in the presence of pyridine to afford the corresponding 2,3-dihydro-4*H*-1,3-selenazin-4-ones (3) and 4*H*-1,3-selenazin-4-ones (4) in moderate yields, respectively (see Table). In this reaction the use of acetophenone, benzophenone, and acyl chlorides did not give a satisfactory result.

Experimental

Microanalyses were performed with a Perkin-Elmer 240 elemental analyser at the Analytical Center of Chiba University. IR spectra were recorded on a Hitachi 215 spectrometer. ¹H NMR spectra were determined with Japan Electron Optics Lab. (JEOL) JNM-FX-270 and MH-100. The chemical shifts are given in ppm with (CH₃)₄Si as an internal standard. Mass spectra were measured on a Hitachi M-60 spectrometer at an ionizing energy at 70 eV. Chloroform and pyridine were purified by standard procedure, and tetrahydrofuran (THF) was distilled from benzophenone ketyl.

2-Cyano-3-hydroxyseleno-3-(methylthio)acrylamide (2): A 100 ml two-necked round flask equipped with a reflux condenser and a Teflon-coated magnetic bar, is dried in vacuo and then flushed with argon. In this flask are placed sodium hydride (60% dispersion, 1.6 g, 40 mmol) and THF

(40 ml). To the resulting slurry solution is added cyanoacetamide (0.84 g, 10 mmol). After stirring at room temperature for 20 min, S,S-dimethyl dithioselenocarbonate (2.2 g, 12 mmol) solution in THF (10 ml) is added and the mixture is refluxed with stirring for 2.5 h until orange coloration is produced. The reaction is quenched with dropping of a degassed water under ice cooling, and a mixture of benzene (40 ml) and degassed water (40 ml) is added to the resulting solution. After shaking in a separatory funnel flushed with argon, an aqueous layer is transfered to a 100 ml Erlenmeyer flask containing hexane (20 ml). The aqueous solution is acidified with 6M-HCl (1 M=1mol dm⁻³) under ice cooling. The obtained material is collected, washed with degassed water (20 ml×2), and dried in a vacuum desiccator; yellow powder of mp 102-104°C; 1.7 g, yield 77%; IR (KBr) 3380, 3280, 3200 (s), 2200 (vs), and 1650 cm⁻¹ (vs); ¹H NMR (CDCl₃) 2.72 (s, 3H, SCH₃), 7.26 (br, 2H, NH₂), and 16.38 (s, 1H, SeH).

Compound 2 thus obtained is used for the following procedures without purification because 2 decomposes to some extent on recrystallization.

5-Cyano-6-methylthio-2-propyl-2,3-dihydro-4*H*-1,3-selenazin-4-one (3c). Typical Procedure: A mixture of 2 (0.44 g, 2 mmol), *n*-butyraldehyde (0.2 g, 3 mmol)³, 6M-H₂SO₄ (2 ml), and methanol (8 ml) is stirred for 4 h at room temperature. The reaction is quenched with water, thus obtained crystals are collected, and recrystallized from isopropyl alcohol to give 3c as pale yellow needles; 0.22 g, yield 41%.

5-Cyano-2-(p-chlorophenyl)-6-methylthio-4H-1,3-selenazin-4-one (4d). Typical Procedure: A mixture of 2 (0.66 g, 3 mmol, p-chlorobenzoyl chloride (1.2 g, 7.6 mmol), pyridine (1.6 ml), and chloroform (10 ml) is shaken for 3 h at room temperature. The reaction is quenched with water and then ethanol, the obtained material is collected, dried in a vacuum desiccator; cream-colored powder (recry. from chloroform-hexane); 0.66 g, yield 66%.

Nicotinoyl chloride is prepared according to the literature.⁵⁾ The others are prepared from the reaction of the corresponding carboxylic acids with thionyl chloride in the usual way.

References

- 1) E. Bulka, "Advances in Heterocyclic Chemistry," ed by A. R. Katritzky, Academic Press, (1963), Vol 2, p. 344.
- 2) M. Takahashi, S. Watanabe, and T. Kasai, Heterocycles, 14, 1921 (1980); K. T. Potts, F. Huang, and R. K. Khattak, J. Org. Chem., 42, 1644 (1977); G. Simchen and G. Entenmann, Justus Liebigs Ann. Chem., 8, 1249 (1977); M. Dzurilla and P. Kristian, Chem. Zvesti., 33, 792 (1979); F. I. Luknitskii, D. O. Taube, and B. A. Vovsi, Zh. Org. Khim., 5, 1844 (1969); A. Shafiee, F. Assadi, and V. I. Cohen, J. Heterocycl. Chem., 15, 39 (1978); M. Dzurilla and P. Kristian, Collect. Czech. Chem. Commun., 41, 1388 (1976).
- 3) M. Yokoyama, T. Shiraishi, H. Hatanaka, and K. Ogata, *J. Chem. Soc.*, *Chem. Commun.*, **1985**, 1704 and related references therein.
- 4) M. Yokoyama and H. Hatanaka, Synthesis, 9, 891 (1985)
- 5) A. M. Grigorovskii and Z. M. Kimen *J. Gen. Chem.*, **18**, 171 (1948).